Isolation and Characterization of New Bitter Diterpenoids from the Basidiomycete Sarcodon scabrosus

by Bing-Ji Ma, Hua-Jie Zhu, and Ji-Kai Liu*

Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, P. R. China (e-mail: jkliu@mail.kib.ac.cn)

The novel cyathane-type diterpenoids scabronine G and H (1 and 2, resp.) were isolated from the fruiting bodies of the basidiomycete *Sarcodon scabrosus* together with four known compounds, allocyathin B₂ (3), sarcodonin A (4), sarcodonin G (5), and scabronine F (6). Their structures were determined by spectroscopic means, including 2D-NMR (HMBC, HMQC, ROESY, ¹H, ¹H-COSY).

Introduction. – Sarcodon scabrosus is a mushroom belonging to the family Thelephoraceae and has a strongly bitter taste. Diterpenoids, sarcodonins A–H and scabronines A–F, have previously been isolated from this mushroom as the bitter principles [1–3]. All these diterpenoids possess a cyathane skeleton consisting of angularly condensed five-, six-, and seven-membered rings and show stimulating activity on nerve-growth-factor (NGF) synthesis *in vitro*. In continuing our studies on basidiomycete-derived bioactive secondary metabolites, we investigated the chemical constituents of the mushroom Sarcodon scabrosus from Yunnan, China. This report describes the structural elucidation of two new compounds, named scabronines G and H (1 and 2, resp.).

Results and Discussion. – The CHCl₃-soluble fraction of the EtOH extract from the fruiting bodies of *S. scabrosus* was subjected to repeated chromatography to give compounds $\mathbf{1}$ and $\mathbf{2}^1$) (*Fig. 1*).

Fig. 1. Structures of scabronines G(1) and H(2)

¹⁾ Arbitrary numbering; for systematic names, see Exper. Part.

Compound **1** was obtained as an optically active oily solid. High-resolution ESI-MS (pos.) gave a pseudomolecular-ion peak at m/z 463.2471 ($C_{27}H_{36}O_5Na^+$; calc. 463.2460). Further spectral data (1H - and ^{13}C -NMR ($Table\ 1$) 1H , 1H -COSY ($Table\ 1$), HMQC, HMBC ($Table\ 1$), and ROESY) established the structure and relative configuration of **1** as shown in $Fig.\ 1$.

Table 1. ${}^{1}H$ - and ${}^{13}C$ -NMR Data (CDCl₃) of 1. δ in ppm, J in Hz; arbitrary numbering¹).

	$\delta(C)$ (DEPT)	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY (selected)	HMBC (selected)
CH ₂ (1)	37.6 (CH ₂)	1.32 (m)		C(17)
$CH_{2}(2)$	28.6 (CH ₂)	2.15(m)		
C(3)	143.2 (C)			
C(4)	134.5 (C)			
H-C(5)	39.9 (CH)	2.95 (br. $d, J = 11.3$)		
C(6)	42.1 (C)			
$CH_{2}(7)$	32.2 (CH ₂)	$1.20 (m, H_{\alpha}), 2.10 (m, H_{\beta})$		
$CH_{2}(8)$	36.3 (CH ₂)	$1.46 \ (m)$		C(4)
C(9)	49.4 (C)			
$CH_2(10)$	33.4 (CH ₂)	2.20(m)	H-C(11)	
H-C(11)	74.1 (CH)	6.02(m)	$CH_2(10)$	
C(12)	142.1 (C)			
H-C(13)	127.1 (CH)	5.82 (d, J = 6.8)	H-C(14)	C(11), C(15)
H-C(14)	75.5 (CH)	3.90 (d, J = 6.8)	H-C(13)	C(5), C(7), C(12)
$CH_2(15)$	62.7 (CH ₂)	4.05 (d, J = 12.8),		
		4.02 (d, J = 12.8)		
Me(16)	16.4 (Me)	0.72(s)		C(5)
Me(17)	24.4 (Me)	1.02 (s)		C(1)
H-C(18)	34.9 (CH)	2.85(m)	$CH_2(19), Me(20)$	C(4)
$CH_2(19)$	65.7 (CH ₂)	3.35(m), 3.28(m)	H-C(18)	
Me(20)	15.6 (Me)	0.86 (d, J = 6.7)	H-C(18)	
C(21)	166.4 (C)			
C(22)	129.8 (C)			
H-C(23),	129.4 (CH)	7.91 $(t, J = 7.2)$	H-C(24), H-C(26)	
H-C(27)				
H-C(24),	128.2 (CH)	7.32 (t, J = 7.2)	H-C(23), H-C(27),	
H-C(26)			H-C(25)	
H-C(25)	133.0 (CH)	7.46 (t, J = 7.2)		

The ¹H-NMR spectrum of **1** showed signals for one secondary and two tertiary Me groups at δ 0.86 (d, J = 6.7 Hz), and 0.72 and 1.02 (each s, each 3 H), respectively. The secondary Me and a CH₂ group at δ (H) 3.35 and 3.28 (2m) were coupled with a CH proton at δ (H) 2.85 (m), demonstrating the presence of an isolated system CH(Me)CH₂OH. ¹H-NMR Signals of 5 aromatic H-atoms at δ (H) 7.32 – 7.91 and six signals in the ¹³C-NMR between (δ (C) 128.2 and 133.0, besides a carbonyl signal at δ (C) 166.4, were consistent with a benzoate moiety. Moreover, the ¹³C-NMR of **1** showed two O–CH and one O–CH₂ signals δ (C) 75.5 and 74.1, and δ (C) 62.7, resp.), and signals of a tetrasubstituted δ (C) 143.2 and 134.5) and trisubstituted C=C bond (δ 142.1 (C) and 127.1 (CH)). Based on these partial structures, the construction of the molecular framework was deduced from ¹H, ¹H COSY, HMQC, and HMBC experiments. The HMBC correlations C(2) (δ 28.6)/H–C(18) (δ 2.85), C(5), C(7), and C(12) (δ 39.9, 32.2, and 142.1)/H–C(14) (δ 3.90), C(17) (δ 24.4)/CH₂(1) (δ 1.32), C(4) (δ 134.5)/CH₂(8) (δ 1.46) and H–C(18) (δ 2.85), C(5) (δ 39.9)/Me(16) (δ 0.72), and C(11) and C(15) (δ 74.1 and 62.7)/H–C(13) (δ 5.82) were consistent with the gross structure shown in *Fig.* 2. The ROESY correlations H_{θ}-C(5)/H–C(11) indicated that these H-atoms were situated on the same side. In addition, the ROESY correlations H_{θ}-C(5)/H–C(14), CH₂(8)/Me(16) and H–C(13)/Me(16) confirmed the proposed relative configuration of **1**.

Fig. 2. HMBC Correlations and planar structure of scabronine G (1)

Compound **2** was obtained as an optically active powder. High-resolution ESI-MS (pos.) gave an pseudomolecular-ion peak at m/z 463.2464 ($C_{27}H_{36}O_5Na^+$; calc. 463.2460). The NMR spectra of **2** were similar to those of **1** but on TLC (silica gel), **1** was less polar than **2**. Interpretation of the spectral data (1H - and ^{13}C -NMR (Table 2),

Table 2. ${}^{1}H$ - and ${}^{13}C$ -NMR Data (CD₃OD) of **2**. δ in ppm, J in Hz; arbitrary numbering¹).

	$\delta(C)$ (DEPT)	$\delta(\mathrm{H})$	¹ H, ¹ H-COSY (selected)	HMBC (selected)
$CH_2(1)$	39.2 (CH ₂)	1.40 (m)		C(17)
$CH_{2}(2)$	30.0 (CH ₂)	2.30(m)		
C(3)	143.7 (C)			
C(4)	136.1 (C)			
H-C(5)	41.4 (CH)	2.78 (br. $d, J = 11.2$)	$CH_2(10)$	
C(6)	43.8 (C)			
$CH_2(7)$	33.0 (CH ₂)	$1.20 (m, H_a), 1.90 (m, H_\beta)$		
$CH_{2}(8)$	38.0 (CH ₂)	$1.50 \ (m)$		C(4)
C(9)	50.6 (C)			
$CH_2(10)$	37.0 (CH ₂)	2.20 (m)	H-C(11)	
H-C(11)	71.6 (CH)	4.72 (m)	$CH_2(10)$	
C(12)	141.2 (C)			
H-C(13)	131.6 (CH)	5.87 (d, J = 6.8)	H-C(14)	C(6), C(11), C(15)
H-C(14)	76.5 (CH)	4.02 (d, J = 6.8)	H-C(13)	C(5), C(7), C(12)
$CH_2(15)$	67.2 (CH ₂)	4.93 (d, J = 12.8),		C(13), C(21)
		4.90 (d, J = 12.8)		
Me(16)	17.3 (Me)	0.83(s)		C(5), C(7), C(14)
Me(17)	25.0 (Me)	1.03 (s)		C(1), C(4)
H-C(18)	36.5 (CH)	3.03(m)	$CH_2(19), Me(20)$	C(2), C(4)
$CH_2(19)$	67.4 (CH ₂)	3.49 (dd), 3.35 (dd)	H-C(18)	C(3)
Me(20)	16.4 (Me)	0.97 (d, J = 6.7)	H-C(18)	
C(21)	167.8 (C)			
C(22)	128.6 (C)			
H-C(23),	130.6 (CH)	8.03 (t, J=7.2)	H-C(24), H-C(26)	
H-C(27)				
H-C(24),	129.6 (CH)	7.46 (t, J = 7.2)	H-C(23), H-C(27),	
H-C(26)			H-C(25)	
H-C(25)	134.2 (CH ₂)	7.58 (t, J = 7.2)		

¹H, ¹H-COSY (*Table 2*), HMQC, and HMBC (*Table 2*)) revealed that **2** had the same gross structure as **1**. However, a detailed comparative study of the NMR and ROESY data of **1** and **2** suggested that **2** was the 11-epimer of **1** (*Fig. 1*)

The NMR signals of C(10), C(11), C(13), C(15), and H-C(11), and $CH_2(15)$ of **1** and **2** were observed at different positions. The ROESY correlations $H_a-C(7)/H-C(14)$, $CH_2(8)/Me(16)$ and H-C(13)/Me(16) of **2** indicated that these H-atoms were situated on the same side. The correlation $H_\beta-C(5)/H-C(11)$ was not observed in the case of **2**.

Comparison of the physicochemical properties with the reported data allowed us to identify compounds 3-6, isolated from the same fungus, as allocyathin B_2 [4], sarcodonin A, sarcodonin G [1], and scabronine F [3], respectively (*Fig. 3*).

This project was supported by the National Natural Science Foundation of China (30225048).

Fig. 3. Structures of allocyathin B (3), sarcodonin A (4), sarcodonin G (5), and scabronine F (6)

Experimental Part

General. Column chromatography CC. Optical rotations: Horiba SEPA-300 digital polarimeter. IR Spectra: Bio-Rad FTS-135 spectrometer; KBr pellets; \tilde{v} in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker AM-400 and DRX-500 spectrometers, SiMe₄ as internal standard; δ in ppm, J in Hz. MS: VG Auto-Spec-3000 and API QSTAR-Pulsar-i spectrometer; m/z (rel. int.).

Mushroom Material. The fresh fruiting bodies of Sarcodon scabrosus were collected at Ailao Mountain of Yunnan Province, P. R. China, in July 2003. The botanical identification was made by Prof. Mu Zang, Kunming Institute of Botany, the Chinese Academy of Sciences. A voucher specimen was deposited in the Herbarium of the Kunming Institute of Botany, the Chinese Academy of Sciences.

Extraction and Isolation. The entire freshly collected fruiting bodies of S. scabrosus (dry weight after extraction 150 g) were immersed in 95% EtOH and left at r.t. for several days. Then the EtOH extract was decanted and evaporated. The residue was extracted with CHCl₃ $(4 \times)$. The extract (70 g) was fractionated by CC (silica gel, petroleum ether/acetone 9:1, 8:2, 7:3, and 6:4). Sarcodonin G (5:12 mg) and scabronine F (6:10 mg) were obtained by prep. TLC (CHCl₃/MeOH 9:1) of Fr. 1 (eluted with petroleum ether/acetone 6:4). Fr. 2 (eluted with petroleum ether/acetone 6:4) was submitted for further purification by reversed-phase CC

(RP-8, MeOH/H₂O 8:2): scabronine G (1; 10 mg), scabronine H (2; 200 mg), allocyathin B_2 (3; 50 mg), and sarcodonin A (4, 150 mg).

 $Scabronine \ G \ \ (= rel-(3aR,5aR,68,9R,10aR)-2,3,3a,4,5,5a,6,9,10,10a-Decahydro-8-(hydroxymethyl)-1-(2-hydroxy-1-methylethyl)-3a,5a-dimethylcyclohept[e]indene-6,9-diol;\ 1): \ Red oil. \ \ [a]_D^{20} = -18.53\ (c=0.2, CHCl_3). \ UV\ (CHCl_3): 207.8, 233.6. \ IR\ (KBr): 3430, 2931, 2867, 1713, 1452, 1375, 1315, 1275, 1177, 1116, 1027, 714. \ ^1H-\ and \ ^1^3C-NMR: \ Table \ 1. \ HR-ESI-MS: 463.2471\ (C_{27}H_{36}O_5Na^+;\ calc.\ 463.2460).$

REFERENCES

- H. Shibata, T. Tokunaga, D. Karaswa, A. Hirota, M. Nakayama, H. Nozaki, T. Tada, Agric. Biol. Chem. 1989, 53, 3373.
- [2] T. Ohta, T. Kita, N. Kobayashi, Y. Obara, N. Nakahata, Tetrahedron Lett. 1998, 39, 6229.
- [3] T. Kita, Y. Takaya, Y. Oshima, Tetrahedron 1998, 54, 11877.
- [4] W. A. Ayer, H. Taube, Tetrahedron Lett. 1972, 19, 1917.

Received July 16, 2004